Extensions 1→N→G→Q→1 with N=C22 and Q=C6.D6

Direct product G=N×Q with N=C22 and Q=C6.D6
dρLabelID
C22×C6.D648C2^2xC6.D6288,972

Semidirect products G=N:Q with N=C22 and Q=C6.D6
extensionφ:Q→Aut NdρLabelID
C22⋊(C6.D6) = Dic32S4φ: C6.D6/Dic3S3 ⊆ Aut C22366C2^2:(C6.D6)288,854
C222(C6.D6) = C62.94C23φ: C6.D6/C3×Dic3C2 ⊆ Aut C2248C2^2:2(C6.D6)288,600
C223(C6.D6) = C62.116C23φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C2224C2^2:3(C6.D6)288,622

Non-split extensions G=N.Q with N=C22 and Q=C6.D6
extensionφ:Q→Aut NdρLabelID
C22.1(C6.D6) = C3⋊C8.22D6φ: C6.D6/C3×Dic3C2 ⊆ Aut C22484C2^2.1(C6.D6)288,465
C22.2(C6.D6) = C12.70D12φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C22244+C2^2.2(C6.D6)288,207
C22.3(C6.D6) = C12.71D12φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C22484-C2^2.3(C6.D6)288,209
C22.4(C6.D6) = C62.32D4φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C22244C2^2.4(C6.D6)288,229
C22.5(C6.D6) = C3⋊C820D6φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C22244C2^2.5(C6.D6)288,466
C22.6(C6.D6) = C62.99C23φ: C6.D6/C2×C3⋊S3C2 ⊆ Aut C2248C2^2.6(C6.D6)288,605
C22.7(C6.D6) = C6.(S3×C8)central extension (φ=1)96C2^2.7(C6.D6)288,201
C22.8(C6.D6) = C2.Dic32central extension (φ=1)96C2^2.8(C6.D6)288,203
C22.9(C6.D6) = C12.78D12central extension (φ=1)48C2^2.9(C6.D6)288,205
C22.10(C6.D6) = C12.15Dic6central extension (φ=1)96C2^2.10(C6.D6)288,220
C22.11(C6.D6) = C62.6Q8central extension (φ=1)96C2^2.11(C6.D6)288,227
C22.12(C6.D6) = C2×C12.29D6central extension (φ=1)48C2^2.12(C6.D6)288,464
C22.13(C6.D6) = C2×C12.31D6central extension (φ=1)48C2^2.13(C6.D6)288,468
C22.14(C6.D6) = C2×Dic32central extension (φ=1)96C2^2.14(C6.D6)288,602
C22.15(C6.D6) = C2×C6.D12central extension (φ=1)48C2^2.15(C6.D6)288,611
C22.16(C6.D6) = C2×C62.C22central extension (φ=1)96C2^2.16(C6.D6)288,615

׿
×
𝔽